Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging
نویسندگان
چکیده
The human brain forms a complex neural network with a connectional architecture that is still far from being known in full detail, even at the macroscopic level. The advent of diffusion MR imaging has enabled the exploration of the structural properties of white matter in vivo. In this article we propose a new forward model that maps the microscopic geometry of nervous tissue onto the water diffusion process and further onto the measured MR signals. Our spherical deconvolution approach completely parameterizes the fiber orientation density by a finite mixture of Bingham distributions. In addition, we define the term anatomical connectivity, taking the underlying image modality into account. This neurophysiological metric may represent the proportion of the nerve fibers originating in the source area which intersect a given target region. The specified inverse problem is solved by Bayesian statistics. Posterior probability maps denote the probability that the connectivity value exceeds a chosen threshold, conditional upon the noisy observations. These maps allow us to draw inferences about the structural organization of the cerebral cortex. Moreover, we will demonstrate the proposed approach with diffusion-weighted data sets featuring high angular resolution.
منابع مشابه
Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملA novel tensor distribution model for the diffusion-weighted MR signal
Diffusion MRI is a non-invasive imaging technique that allows the measurement of water molecule diffusion through tissue in vivo. The directional features of water diffusion allow one to infer the connectivity patterns prevalent in tissue and possibly track changes in this connectivity over time for various clinical applications. In this paper, we present a novel statistical model for diffusion...
متن کاملSIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography
Diffusion MRI streamlines tractography allows for the investigation of the brain white matter pathways non-invasively. However a fundamental limitation of this technology is its non-quantitative nature, i.e. the density of reconstructed connections is not reflective of the density of underlying white matter fibres. As a solution to this problem, we have previously published the "spherical-decon...
متن کاملMRI Tractography of Corticospinal Tract and Arcuate Fasciculus in High-Grade Gliomas Performed by Constrained Spherical Deconvolution: Qualitative and Quantitative Analysis.
BACKGROUND AND PURPOSE MR imaging tractography is increasingly used to perform noninvasive presurgical planning for brain gliomas. Recently, constrained spherical deconvolution tractography was shown to overcome several limitations of commonly used DTI tractography. The purpose of our study was to evaluate WM tract alterations of both the corticospinal tract and arcuate fasciculus in patients w...
متن کاملComputational Science and Engineering International Master ’ s Program at the Faculty of Informatics EFFICIENT SAMPLING FOR ACCELERATED DIFFUSION MAGNETIC RESONANCE IMAGING
Diffusion magnetic resonance imaging (dMRI) is a non-invasive method that allows connectivity mapping of the brain. However, despite major advances in this field, accurate inference of these patterns and its applicability within a clinical context is still in its early stages. This thesis describes a conceptually novel method for reconstructing neuronal pathways inside the brain from diffusion-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 37 2 شماره
صفحات -
تاریخ انتشار 2007